多项式回归

多项式的定义及展现形式

多项式(Polynomial)是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。 多项式分为一元多项式和多元多项式,其中: 不定元只有一个的多项式称为一元多项式; 不定元不止一个的多项式称为多元多项式。

本文讨论的是一元多项式相关问题。

其一般形式如下(python语法表达方式):

y = a0 + a1 * x + a2 * (x**2) + ... + an * (x ** n) + e

比如普通的二次多项式回归模型如下(python语法表达方式):

y = a0 + a1 * x + a2 * (x**2) + e

普通的三次多项式回归模型如下(python语法表达方式):

y = a0 + a1 * x + a2 * (x**2) + a3 * (x**3) + e

多项式回归

在单因子(连续变量)试验中,当回归函数不能用直线来描述时,要考虑用非线性回归函数。 多项式回归属于非线性回归的一种。 这里指单因子多项式回归,即一元多项式回归。

一般非线性回归函数是未知的,或即使已知也未必可以用一个简单的函数变换转化为线性模型。这时,常用的做法是用因子的多项式。 如果从散点图观察到回归函数有一个“弯”,则可考虑用二次多项式;有两个弯则考虑用三次多项式;有三个弯则考虑用四次多项式,等等。

真实的回归函数未必就是某个次数的多项式,但只要拟合得好,用适当的多项式来近似真实的回归函数是可行的。